Step of Proof: member_nth_tl
11,40
postcript
pdf
Inference at
*
2
1
1
1
I
of proof for Lemma
member
nth
tl
:
.....assertion..... NILNIL
1.
T
: Type
2.
n
:
3. 0 <
n
4.
x
:
T
,
L
:(
T
List). (
x
nth_tl(
n
- 1;
L
))
(
x
L
)
5.
T
6.
T
List
n
:
. nth_tl(
n
;[]) = []
latex
by ((InductionOnNat)
CollapseTHEN (((Reduce 0)
CollapseTHEN (Auto
))
))
latex
C
1
: .....upcase..... NILNIL
C1:
7.
n1
:
C1:
8. 0 <
n1
C1:
9. nth_tl(
n1
- 1;[]) = []
C1:
nth_tl(
n1
;[]) = []
C
.
Definitions
Void
,
n
+
m
,
-
n
,
A
,
False
,
P
Q
,
i
j
,
A
B
,
t
T
,
{
x
:
A
|
B
(
x
)}
,
,
i
z
j
,
i
<z
j
,
nth_tl(
n
;
as
)
,
n
-
m
,
#$n
,
[]
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
a
<
b
,
,
Type
,
s
=
t
,
type
List
Lemmas
ge
wf
,
nat
properties
,
nat
wf
,
nat
ind
tp
origin